Abstract
I-III-VI quantum dots (QDs) have gained widespread attention owing to their significant advantages of non-toxicity, large structural tolerance, and efficient photoluminescence potential. However, the disbalance of reactivity between the elements will result in undesired products and compromised optical properties. Reducing the activity of highly reactive group IB elements is the most common approach, but it will reduce the overall reactivity and lead to a wide dispersion of QD sizes. In this study, we propose a method to improve the overall reactivity of the reaction system using the highly active IIIA precursor InI3, which triggers rapid nucleation and promotes the formation of Ag(In,Ga)S2 (AIGS) QDs, resulting in monodisperse particle size distributions and a significantly improved photoluminescence quantum yield (PLQY) (from 12% to 72%). Furthermore, narrow band edge emission is realized by coating a gallium sulfide (GaSx) shell on the basis of obtaining high-quality AIGS QDs. The core/shell QDs exhibit a 90% PLQY with a full width at half maximum (FWHM) of only 31 nm at 530 nm. This study provides a viable design strategy to synthesize monodisperse AIGS QDs with a narrow peak width and efficient luminescence, promoting the application of AIGS QDs in the field of luminescent displays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.