Abstract
Microscale zerovalent iron (mZVI) reduces chlorinated aliphatic hydrocarbons (CAHs) to harmless compounds, but the sedimentation of the mZVI particles in the injection fluid limits the injectability of the particles during field applications. In this study, mZVI particles in suspension were stabilized by green polymer guar gum, which had a positive impact on mZVI stability, but decreased the reactivity of the particles towards CAHs by 1 to 8 times. Guar gum (GG) was found to adsorb onto the mZVI surface, inhibiting contact between the chlorinated compounds and the reactive iron surface. Indications were found for intermolecular hydrogen bonding between mZVI and the guar gum. Subsequent addition of commercially available enzymes resulted in the cleavage of the polysaccharide guar gum into lower molecular fragments, but not in improved reactivity. The reactivity recovery of guar gum coupled mZVI was recovered after intensive rinsing of the iron particles, removing the guar gum fragments from the particles. Overall, this study shows that CAHs can be treated efficiently by guar gum stabilized mZVI after reactivation by means of enzymatic breakdown and rinsing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.