Abstract

The reactivity of Zn(7)- and Cd(7)-metallothionein (MT) with S-nitrosopenicillamine (SNAP), S-nitrosoglutathione (GSNO), and 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA/NO) was investigated to explore the hypothesis that metallothionein is a signficant site of cellular reaction of nitric oxide or NO compounds. Zn(7)-MT reacted with SNAP or GSNO only under aerobic conditions and in the presence of light, which stimulates the decomposition of S-nitrosothiolates to NO. Zn(2+) is released, and protein thiols are modified. DEA/NO, which degrades spontaneously to release NO, also reacted with Zn(7)-MT only when oxygen was present. Anaerobically, DEA/NO reacted with Zn(7)-MT in the presence of 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, which converts NO to NO(2). Glutathione competed effectively with Zn(7)-MT for reactive nitrogen oxide species in reaction mixtures. Reaction of Cd(7)-MT with SNAP also required oxygen and light to react. In this case, only a fraction of the Cd(2+) bound to Cd(7)-MT was displaced by SNAP. Apo-metallothionein was much more reactive with SNAP and DEA-NO than Zn(7)- or Cd(7)-MT. TE671 and LLC-PK(1) cell lines were incubated with DEA/NO to examine the role that MT might play in the cellular reactions of this NO donor compound. Incubation of cells with 0-80 microM Zn(2+) for 24 h resulted in progressively increasing concentrations of Zn-unsaturated MT. One hour of cellular exposure to a range of DEA/NO concentrations followed by 24 h of incubation caused no evident acute toxicity at less than 0.45 mM. Preinduction of MT did not alter this response. The effects of DEA/NO on proteomic, metallothionein, and low molecular weight (LMW) thiol pools, including glutathione (GSH), were measured. Substantial fractions of the proteomic and LMW thiol pools underwent reaction with little dislocation of Zn(2+). In addition, one-third of the MT thiol pool reacted without labilizing any of the bound Zn(2+). These results demonstrated that it was free thiols associated with MT that reacted with DEA/NO not those bound to Zn(2+). Moreover, under the conditions of the experiments, DEA/NO reacted with the spectrum of cellular thiols in proportion to their fraction in the cytosol and did not preferentially react with MT sulfhydryl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.