Abstract

Ribonucleotide reductase is a key enzyme for DNA synthesis. Its small component, named protein R2, contains a tyrosyl radical essential for activity. Consequently, radical scavengers are potential antiproliferative agents. In this study, we show that the reactivity of the tyrosyl radical towards phenols, hydrazines, hydroxyurea, dithionite and ascorbate can be finely tuned by relatively small modifications of its hydrophobic close environment. For example, in this hydrophobic pocket, Leu77-->Phe mutation resulted in a protein with a much higher susceptibility to radical scavenging by hydrophobic agents. This might suggest that the protein is flexible enough to allow small molecules to penetrate in the radical site. When mutations keeping the hydrophobic character are brought further from the radical (for example Ile74-->Phe) the reactivity of the radical is instead very little affected. When a positive charge was introduced (for example Ile74-->Arg or Lys) the protein was more sensitive to negatively charged electron donors such as dithionite. These results allow us to understand how tyrosyl radical sites have been optimized to provide a good stability for the free radical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.