Abstract

Cross-correlations of rate constants between a system of interest and a better-defined one have become popular as a tool in studying transformations of organic pollutants. A slope of unity (if the correlation is conducted on a log-log basis) in such plots has been invoked as evidence of a common mechanism. To explore this notion, benzotrichloride and several of its substituted analogues were reacted with Cr(H2O)6(2+), an iron(II) porphyrin (iron meso-tetra(4-carboxyphenyl)porphine chloride, Fe(II)TCP), and granular iron. The first two reductants react with organohalides by dissociative inner sphere single-electron transfer, while mechanism(s) for organohalide reduction by granular iron are still debated. Apartfrom sterically hindered compounds, good correlations were obtained in comparing any two systems, although slopes (on a log-log basis) deviated from unity. We argue that a slope of unity is neither necessary nor sufficient evidence of a common mechanism. Overall rate constants may be composite entities, consisting in part of rate or equilibrium constants for adsorption onto surfaces or for precursor formation in solution; these components may differ between systems in their susceptibility to substituent effects. Cross-correlations may prove useful in predicting reactivity in the absence of steric effects, but additional evidence is required in deducing reaction mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call