Abstract

The reactivity of olefins and S-compounds and their distributions in different catalyst-bed lengths were experimentally evaluated with a FCC gasoline in a high-pressure fixed-bed continuous flow pilot unit over the CoMoS/γ-Al2O3 catalyst. The evaluation results demonstrated that the increased steric hindrances around the double bond (C=C) and that to the thiophene molecules could suppress the hydrogenation of olefins and hydrodesulfurization (HDS) of S-compounds, respectively. Meanwhile, the reaction temperatures could influence the acidic property of the CoMoS active phase confirmed by FT-IR analysis, and thus induced the different reactions. It was found that the isomerization of terminal olefins to internal olefins was promoted by the Brønsted acid sites (-SH) at low temperatures, as well as the skeletal isomerization by the strong Lewis acid sites occurred to a minor extent at high temperatures. Besides, the distributions of olefins and S-compounds in different catalyst-bed lengths showed that the removal of S-compounds reached 80% of its maximum conversion at the first 40% of the reactor length, however, the saturation of olefins increased linearly as the reactor length increased. Therefore, a new catalyst-loading method was developed, i.e., the upper 40% of the reactor length filling with catalyst of high HDS activity and the bottom 60% with catalyst of low olefin saturation activity, respectively. The evaluation results showed that the graded catalyst loading process showed higher selectivity in HDS of FCC gasoline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call