Abstract

Sulfinamide [RS(O)NH(2)] formation is known to occur upon exposure of cysteine residues to nitroxyl (HNO), which has received recent attention as a potential heart failure therapeutic. Because this modification can alter protein structure and function, we have examined the reactivity of sulfinamides in several systems, including a small organic molecule, peptides, and a protein. Although it has generally been assumed that this thiol to sulfinamide modification is irreversible, we show that sulfinamides can be reduced back to the free thiol in the presence of excess thiol at physiological pH and temperature. We have examined this sulfinamide reduction both in peptides, where a cyclic intermediate analogous to that proposed for asparagine deamidation reactions potentially can contribute, and in a small organic molecule, where the mechanism is restricted to a direct thiolysis. These studies suggest that the contribution from the cyclic intermediate becomes more important in environments with lower dielectric constants. In addition, although sulfinic acid [RS(O)OH] formation is observed upon prolonged incubations in water, reduction of sulfinamides is found to dominate in the presence of thiols. Finally, studies with the cysteine protease, papain, suggest that the reduction of sulfinamide to the free thiol is viable in a protein environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call