Abstract

The nitrovinyl-substituted quinones 2-(2-nitrovinyl)-1,4-benzoquinone and 2-(2-nitrovinyl)-1,4-naphthoquinone react with a variety of cyclic and acyclic enol ethers via two competing pathways. In one pathway, the nitrovinylquinone acts as an inverse electron-demand [4 + 2] diene. This gives quinoid carbocycles, which readily tautomerize to their hydroquinone form. The other pathway involves conjugate (Michael) addition of the enol ether to the nitrovinylquinone, followed by ring closure. This gave dihydrobenzofurans, which can eliminate an alcohol to give benzofurans. Hindered enol ethers tended to favor the conjugate addition pathway, while less hindered enol ethers favored cycloaddition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.