Abstract

The gas-phase reactions of mono-halogen substituted carbene radical anions, CHX–˙(X = F, Cl and Br) and the corresponding carbanions, CH2X–(X = Cl and Br) with halomethanes and organic esters have been examined with the use of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The chlorine and bromine containing (radical) anions react by SN2 substitution with the parent chloro- and bromo-urethanes, whereas an SN2 and/or a BAC2 reaction occurs with the methyl ester of trifluoroacetic acid and dimethyl carbonate. The main features of the results are: (i) the SN2 substitution of a given carbene radical anion with CH3Cl or CH3Br is less efficient than this reaction of the corresponding carbanion, (ii) the radical anions react less efficiently with dimethyl carbonate than the carbanions, (iii) the SN2 substitution is less important for the radical anions than for the carbanions in the reactions with the two carbonyl compounds, (iv) for both types of ions, the BAC2 pathway becomes relatively more important as the halogen atom is changed from chlorine to bromine. These findings are discussed in terms of the thermodynamics of the overall processes in combination with considerations of the potential energy surfaces which can describe these gas-phase processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.