Abstract

Experimental kinetic data on reactions of the chlorine atom with halogenated derivatives of methane and ethane (37 reactions) have been analyzed by the intersecting-parabolas method. The following five factors have an effect on the activation energy of these reactions: the enthalpy of reaction, triplet repulsion, the electronegativities of the reaction center atoms, the dipole–dipole and multidipole interactions between the reaction center and polar groups, and the effect of π electrons in the vicinity of the reaction center. The increments characterizing the contribution from each factor to the activation energy of the reaction have been calculated. The contribution from the polar interaction, ΔE μ, to the activation energy depends on the dipole moment of the polar group and obeys the following empirical equation: ln(ΔE μ/Σμ) = −0.74 + 0.87(ΔE μ/Σμ) − 0.084(ΔE μ/Σμ)2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.