Abstract

Adsorption properties of group 13 element Tl and the superheavy element Nh, as well of their hydroxides on various modified quartz surfaces, are predicted on the basis of relativistic periodic DFT calculations using the BAND software. The obtained adsorption energies, Eads, of the MOH (M = Tl and Nh) molecules are indicative of the relatively strong interaction of the hydroxides with all the considered quartz surfaces. In contrast, adsorption of the Tl and Nh atoms was found to be significantly weaker. The adsorption strength of both M and MOH (M = Tl and Nh) was shown to increase with the dehydroxylation of the quartz surface. Very good agreement is reached between the calculated Eads(TlOH) of 133 kJ/mol on the fully hydroxylated quartz surface and of 157 kJ/mol on the partially dehydroxylated quartz surface on the one hand and experimental adsorption enthalpies, -ΔHads, of 134/137 ± 5 kJ/mol (at ∼300 °C) and 158 ± 3 kJ/mol (at ∼500 °C), respectively, on the other hand. Thus, we suggest that all the experimental ΔHads values for Tl should be assigned to the adsorption/desorption of the TlOH molecule. For NhOH, its adsorption properties on various quartz surfaces should be very similar to those of TlOH, with slightly smaller Eads values. Adsorption of the Nh atom should, however, be much weaker than that of the Tl atom due to stronger spin-orbit effects in Nh.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call