Abstract

The application of advanced oxidation processes (AOPs) for the treatment of wastewater is hindered by scavenging of the hydroxyl radical (HO*) by effluent organic matter (EfOM). This scavenging is directly proportional to the second-order reaction rate constant between EfOM and HO* (kEfOM-HO*). To understand the kinetics of this reaction as a function of the subcomponents of EfOM, four wastewater samples were fractionated by ultrafiltration into distinct apparent molecular weight (AMW) fractions (<1, <3, <5, and <10 kDa), and their kEfOM-HO* values were quantified. In general, the values for k(EfOM-HO*) decreased as the AMW increased. The values of k(EfOM-HO*) for the bulk waters varied between 6.32 and 14.1x10(8) MC(-1)s(-1) (units of per molar carbon concentration per second). In the case of the <1 kDa fraction, the values of kEfOM-HO* varied from 14.3 to 35.0x10(8) MC(-1)s(-1), or approximately 2.31(+/-0.24) times that of the corresponding bulk waters. For the <3 kDa, <5 kDa, and <10 kDa fractions, the k(EfOM-HO*) values were 1.83(+/-0.25), 1.32(+/-0.23), and 1.26(+/-0.35) times that of the bulk waters, respectively. Based on the obtained results, the variability and general magnitude of the kEfOM-HO* values were attributed to the production and reactivity of soluble microbial products (SMP), a major component of EfOM. Two samples collected at a wastewater treatment facility with different treatment variables had different kEfOM-HO* values, indicating that wastewater treatment processes will impact overall HO* scavenging by EfOM and should be considered during the implementation of AOPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.