Abstract
Reactions of a variety of cyclic and acyclic olefins with the title alkylidene complex (formed spontaneously by loss of neopentane from Cp*Mo(NO)(CH2CMe3)2 under ambient conditions) result in the initial formation of molybdenacyclobutane complexes (Cp* = C5Me5). These molybdenacyclobutane complexes do not react via olefin metathesis or cyclopropanation pathways, but instead via C−H activation. Thus, when cyclopentene is the olefinic substrate, the direct result of C−H activation at the β-position of the metallacyclobutane affords a thermally stable allyl hydrido complex that can be isolated. Such an allyl hydride intermediate is not isolable for larger cyclic olefins (cyclohexene, cycloheptene, and cyclooctene) or acyclic olefins (allylbenzene and 1-hexene). Instead, those complexes react further, undergoing a second C−H activation at the allylic position to produce η4-trans-diene complexes concomitant with the loss of dihydrogen. Upon heating, these η4-trans-diene complexes liberate diene, thereby enabling the 14e Cp*Mo(NO) metal fragment to catalyze the oligomerization of cyclic olefins and dienes including cyclohexene and 1,4-cyclohexadiene. In the case of the acyclic olefin allylbenzene, the metal fragment catalyzes a dimerization to (E)-(4-methylpent-1-ene-1,5-diyl)dibenzene under ambient conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.