Abstract
The adsorption of molecular deuterium (D2 ) onto charged cobalt-fullerene-complexes Con C60 + (n=1-8) is measured experimentally in a few-collision reaction cell. The reactivity is strongly size-dependent, hinting at clustering of the transition metal atoms on the fullerenes. Formation and desorption rate constants are obtained from the pressure-dependent deuterogenation curves. DFT calculations indeed find that this transition metal clustering is energetically more favorable than decorating the fullerene. For n=1, D2 is predicted to bind molecularly and for n=2 dissociative and molecular configurations are quasi-isoenergetic. For n=3-8, dissociation of D2 is thermodynamically preferred. However, reaching the ground state configuration with dissociated deuterium on the timescale of the experiment may be hindered by dissociation barriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.