Abstract

The adsorption of molecular deuterium (D2 ) onto charged cobalt-fullerene-complexes Con C60 + (n=1-8) is measured experimentally in a few-collision reaction cell. The reactivity is strongly size-dependent, hinting at clustering of the transition metal atoms on the fullerenes. Formation and desorption rate constants are obtained from the pressure-dependent deuterogenation curves. DFT calculations indeed find that this transition metal clustering is energetically more favorable than decorating the fullerene. For n=1, D2 is predicted to bind molecularly and for n=2 dissociative and molecular configurations are quasi-isoenergetic. For n=3-8, dissociation of D2 is thermodynamically preferred. However, reaching the ground state configuration with dissociated deuterium on the timescale of the experiment may be hindered by dissociation barriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call