Abstract
The quantum mechanics-based test for overall free-radical scavenging activity was applied for the investigation of antioxidative capacity of chlorogenic acid (5-O-caffeoylquinic acid, 5CQA) relative to trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, Tx) as a reference compound. Hydrogen atom transfer (HAT), radical adduct formation (RAF), electron transfer (ET), and proton loss (PL) reactions of 5CQA and Tx with HO• and CH3OO• radicals in benzene and pentyl ethanoate were examined. For this purpose, two theoretical models, M06-2X/6-311++G(d,p) in combination with the CPCM solvation model, and M05-2X/6-311++G(d,p) in combination with the SMD solvation model, were employed. It was found that M05-2X/6-311++G(d,p)—SMD failed to evaluate the influence of pentyl ethanoate, whereas M06-2X—CPCM in benzene and pentyl ethanoate and M05-2X—SMD in benzene proved to be operative and showed similar trends. Both compounds can react with HO• via HAT and RAF mechanisms, whereas HAT is the only reaction pathway with CH3OO•. 5CQA is more efficient scavenger of HO• than Tx, but less efficient scavenger of CH3OO•. Less reactive free radicals are more suitable for the determination of antioxidative activity of a compound relative to Tx. Highly reactive free radicals need to be included in the investigation of all potential reaction pathways of the compound, in which case the results from different approaches can be inconsistent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.