Abstract

Hydrothermal carbonization (HTC) of pure cellulose (CE) and birchwood (BW) samples was carried out at temperatures between 160 and 280 °C, 0.5 h residence time and biomass-to-water ratio 1:5, to investigate the reactivity of cellulose in lignocellulosic biomass. Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) showed that the CE samples remained unaltered at temperatures up to 220 °C, but were significantly decomposed at 230 °C producing a thermal recalcitrant aromatic and high energy-dense material. FTIR showed that dehydration and aromatization reactions occurred at temperature equal or higher than 230 °C for the CE samples while a similar increase in aromatization for the BW hydrochars was evident only at temperatures equal or higher than 260 °C. Acid hydrolysis, TGA and FTIR suggested that a higher thermal resistance of naturally occurring cellulose in BW (when compared to CE sample) could be related to a ‘protecting shield’ offered by interlinked lignin in the plant matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call