Abstract

The preparation and characterization of a series of isostructural cobalt complexes [Co(t-Bu)2P(E)Py(E)P(t-Bu)2(CH3CN)2][BF4]2 (Py = pyridine, E = CH2, NH, O, and X = BF4 (1a-c)) and the corresponding one-electron reduced analogues [Co(t-Bu)2P(E)Py(E)P(t-Bu)2(CH3CN)2][BF4]2 (2a-c) are reported. The reactivity of the reduced cobalt complexes with CO2, CO, and H(+) to generate intermediates in a CO2 to CO and H2O reduction cycle are described. The reduction of 1a-c and subsequent reactivity with CO2 was investigated by cyclic voltammetry, and for 1a also by infrared spectroelectrochemistry. The corresponding CO complexes of (2a-c) were prepared, and the Co-CO bond strengths were characterized by IR spectroscopy. Quantum mechanical methods (B3LYP-d3 with solvation) were used to characterize the competitive reactivity of the reduced cobalt centers with H(+) versus CO2. By investigating a series of isostructural complexes, correlations in reactivity with ligand electron withdrawing effects are made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.