Abstract
Combining adaptive and innate immunity induction modes, the repertoire of immunoglobulin M (IgM) can reflect changes in the internal environment including malignancies. Previously, it was shown that a mimotope library reflecting the public IgM repertoire of healthy donors (IgM IgOme) can be mined for efficient probes of tumor biomarker antibody reactivities. To better explore the interpretability of this approach for IgM, solid tumor-related profiles of IgM reactivities to linear epitopes of actual tumor antigens and viral epitopes were studied. The probes were designed as oriented planar microarrays of 4526 peptide sequences (as overlapping 15-mers) derived from 24 tumor-associated antigens and 209 cancer-related B cell epitopes from 30 viral antigens. The IgM reactivity in sera from 21 patients with glioblastoma multiforme, brain metastases of other tumors, and non-tumor-bearing neurosurgery patients was thus probed in a proof-of-principle study. A graph representation of the binding data was developed, which mapped the cross-reactivity of the mixture of IgM (poly)specificities, delineating different antibody footprints in the features of the graph-neighborhoods and cliques. The reactivity graph mapped the major features of the IgM repertoire such as the magnitude of the reactivity (titer) and major cross-reactivities, which correlated with blood group reactivity, non-self recognition, and even idiotypic specificities. A correlation between an aspect of this image of the IgM IgOme, namely, small cliques reflecting rare self-reactivities and the capacity of subsets of the epitopes to separate the diagnostic groups studied was found. In this way, the graph representation helped the feature selection in its filtering step and provided reduced feature sets, which, after recursive feature elimination, produced a classifier containing 51 peptide reactivities separating the three diagnostic groups with an unexpected efficiency. Thus, IgM IgOme approaches to repertoire studies is greatly augmented when self/viral antigens are used and the data are represented as a reactivity graph. This approach is most general, and if it is applicable to tumors in immunologically privileged sites, it can be applied to any solid tumors, for instance, breast or lung cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.