Abstract

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products defined by a genetically encoded precursor peptide that is processed by associated biosynthetic enzymes to form the mature product. Lasso peptides are a class of RiPP defined by an isopeptide linkage between the N-terminal amine and an internal Asp/Glu residue with the C-terminal sequence threaded through the macrocycle. This unique lariat topology, which typically provides considerable stability toward heat and proteases, has stimulated interest in lasso peptides as potential therapeutics. Post-translational modifications beyond the class-defining, threaded macrolactam have been reported, including one example of Arg deimination to yield citrulline (Cit). Although a Cit-containing lasso peptide (i.e., citrulassin) was serendipitously discovered during a genome-guided campaign, the gene(s) responsible for Arg deimination has remained unknown. Herein, we describe the use of reactivity-based screening to discriminate bacterial strains that produce Arg- versus Cit-bearing citrulassins, yielding 13 new lasso peptide variants. Partial phylogenetic profiling identified a distally encoded peptidyl arginine deiminase (PAD) gene ubiquitous to the Cit-containing variants. Absence of this gene correlated strongly with lasso peptide variants only containing Arg (i.e., des-citrulassin). Heterologous expression of the PAD gene in a des-citrulassin producer resulted in the production of the deiminated analog, confirming PAD involvement in Arg deimination. The PADs were then bioinformatically surveyed to provide a deeper understanding of their taxonomic distribution and genomic contexts and to facilitate future studies that will evaluate any additional biochemical roles for the superfamily.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call