Abstract

Cytotoxicity of atracurium and of its metabolites was tested in vitro. Exposure of isolated rat hepatocytes to atracurium produced cellular damage evidenced by extrusion of an intracellular enzyme, lactate dehydrogenase (LDH), into the incubation medium. Leakage of LDH was directly related to the concentration of atracurium in the medium (250 to 800 microM). If the spontaneous degradation of atracurium (presumably via Hofmann elimination) was first carried out in vitro and the degradation products subsequently added to the isolated hepatocytes, the leakage of LDH was also dose-dependent but larger than that observed after the addition of the parent drug. When l-cysteine was admixed to the products of the spontaneous degradation of atracurium prior to their addition to the liver cells, no leakage of LDH was observed. The results are compatible with the working hypothesis that atracurium itself and, even more so, acrylates formed in Hofmann elimination of atracurium, are reactive toward nucleophiles and damage the cells by alkylating nucleophiles present in cellular membranes. Antecedent covalent binding of acrylates to the nucleophile cysteine, i.e., the formation of acrylate-cysteine adducts, saturated the reactive capacity of acrylates for nucleophiles and thus prevented the reactive metabolites from alkylating the endogenous nucleophiles. Possible clinical consequences resulting from in vivo generation of reactive metabolites are not clear at the present time but are projected to be related to (a) the dose of atracurium administered, (b) the amount of acrylates generated, (c) the functional importance of the endogenous nucleophiles alkylated, and (d) the pathway and the speed of detoxification of atracurium and its metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call