Abstract
AbstractThe emergence of atomically precise metal nanoclusters with unique electronic structures provides access to currently inaccessible catalytic challenges at the single‐electron level. We investigate the catalytic behavior of gold Au25(SR)18 nanoclusters by monitoring an incoming and outgoing free valence electron of Au 6s1. Distinct performances are revealed: Au25(SR)18− is generated upon donation of an electron to neutral Au25(SR)180 and this is associated with a loss in reactivity, whereas Au25(SR)18+ is generated from dislodgment of an electron from neutral Au25(SR)180 with a loss in stability. The reactivity diversity of the three Au25(SR)18 clusters stems from different affinities with reactants and the extent of intramolecular charge migration during the reactions, which are closely associated with the valence occupancies of the clusters varied by one electron. The stability difference in the three clusters is attributed to their different equilibria, which are established between the AuSR dissociation and polymerization influenced by one electron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.