Abstract

Oxidative stress produces a variety of radicals in DNA, including pyrimidine nucleobase radicals. The nitrogen-centered DNA radical 2'-deoxycytidin-N4-yl radical (dC·) plays a role in DNA damage mediated by one electron oxidants, such as HOCl and ionizing radiation. However, the reactivity of dC· is not well understood. To reduce this knowledge gap, we photochemically generated dC· from a nitrophenyl oxime nucleoside and within chemically synthesized oligonucleotides from the same precursor. dC· formation is confirmed by transient UV-absorption spectroscopy in laser flash photolysis (LFP) experiments. LFP and duplex DNA cleavage experiments indicate that dC· oxidizes dG. Transient formation of the dG radical cation (dG+•) is observed in LFP experiments. Oxidation of the opposing dG in DNA results in hole transfer when the opposing dG is part of a dGGG sequence. The sequence dependence is attributed to a competition between rapid proton transfer from dG+• to the opposing dC anion formed and hole transfer. Enhanced hole transfer when less acidic O6-methyl-2'-deoxyguanosine is opposite dC· supports this proposal. dC· produces tandem lesions in sequences containing thymidine at the 5'-position by abstracting a hydrogen atom from the thymine methyl group. The corresponding thymidine peroxyl radical completes tandem lesion formation by reacting with the 5'-adjacent nucleotide. As dC· is reduced to dC, its role in the process is traceless and is only detectable because of the ability to independently generate it from a stable precursor. These experiments reveal that dC· oxidizes neighboring nucleotides, resulting in deleterious tandem lesions and hole transfer in appropriate sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.