Abstract

AbstractDual photoredox catalysis has revolutionized the field of cross‐coupling reactions, enabling the discovery of numerous highly efficient reactions. This breakthrough is attributed to the exceptional combination of nickel catalysis with photoredox catalysis. Nickel exhibits both oxidative addition and reductive elimination processes, and a wide range of oxidation states (ranging from I to IV) accessible within a single catalytic cycle. Furthermore, nickel complexes are capable of catalyzing various processes through radical mechanisms. The latest feature has proven to be incredibly potent in facilitating the formation of new C−C and C−X bonds (X=H, O, S, N). The powerful combination of photoredox and nickel catalysis reveals an expansive domain of unexplored possibilities. It offers unparalleled opportunities for improving reactions and exploring innovative pathways. Under photoredox conditions, it is possible to form nucleophilic reactive organometallic intermediates, useful in reaction with electrophiles. We have devoted a research program towards the rediscovery and use of organometallic reagents, introduced by Corey, Hegedus, and Semmelack many years ago. The results unveiled the extraordinary capabilities of photoredox catalysis, enabling the creation and efficient utilization of potent nucleophilic organometallic reagents under mild conditions, free from the need for strong bases or stoichiometric metal reductants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.