Abstract

A novel type of smart antenna, called a reactively steered ring antenna array (RSRAA), is proposed. The antenna features a conformal configuration with three overlapping one-wavelength ring elements. Directivity can be controlled by changing the values of variable reactance circuits that are embedded in the antenna. The antenna can be mounted on the windshield of an automobile without interfering with the view of the driver. An equivalent model of six dipole elements is derived from the original antenna configuration to enable simple calculation of directivity when a set of reactance values is given. The validity of the proposed equivalent model is confirmed by comparing simulation results calculated by the equivalent model and by the method of moments. Another simulation shows that the conventional reactance domain multiple signal classification algorithm can be applied to the proposed antenna while keeping the estimated direction-of-arrival number equal to the number of reactance circuits. In addition, the characteristics of an RSRAA, which is optimized at 2.4 GHz and is mounted on an automobile, are measured in an anechoic chamber, and directivity control is found to be implemented effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call