Abstract

The reactive transport of uranium (U) and vanadium(V) from abandoned mine wastes collected from the Blue Gap/Tachee Claim-28 mine site in Arizona was investigated by integrating flow-through column experiments with reactive transport modeling, and electron microscopy. The mine wastes were sequentially reacted in flow-through columns at pH 7.9 (10 mM HCO3-) and pH 3.4 (10 mM CH3COOH) to evaluate the effect of environmentally relevant conditions encountered at Blue Gap/Tachee on the release of U and V. The reaction rate constants (km) for the dissolution of uranyl-vanadate (U-V) minerals predominant at Blue Gap/Tachee were obtained from simulations with the reactive transport software, PFLOTRAN. The estimated reaction rate constants were within 1 order of magnitude for pH 7.9 (km = 4.8 × 10-13 mol cm-2 s-1) and pH 3.4 (km = 3.2 × 10-13 mol cm-2 s-1). However, the estimated equilibrium constants (Keq) for U-V bearing minerals were more than 6 orders of magnitude different for reaction at circumneutral pH (Keq = 10-38.65) compared to acidic pH (Keq = 10-44.81). These results coupled with electron microscopy data suggest that the release of U and V is affected by water pH and the crystalline structure of U-V bearing minerals. The findings from this investigation have important implications for risk exposure assessment, remediation, and resource recovery of U and V in locations where U-V-bearing minerals are abundant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call