Abstract
ABSTRACTThe reactive transport model HYTEC was used to simulate the migration over 100,000 years of cesium, americium and uranium released from spent fuel packages in the near-field components of an underground stiff clay disposal site. A global equilibrium thermodynamic approach including kinetic control of the spent fuel pellets was used with instantaneous release fractions and congruent dissolutions of the rim and the core zones. A failure scenario of the waste package after 10,000 years was considered with magnetite as the main corrosion product. The retention properties of magnetite and the different effects of bentonite and cementitious backfill materials were specifically analysed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.