Abstract

Reactive synthesis is a key technique for the design of correct-by-construction systems and has been thoroughly investigated in the last decades. It consists in the synthesis of a controller that reacts to environment's inputs satisfying a given temporal logic specification. Common approaches are based on the explicit construction of automata and on their determinization, which limit their scalability. In this paper, we introduce a new fragment of Linear Temporal Logic, called Extended Bounded Response LTL (LTL EBR ), that allows one to combine bounded and universal unbounded temporal operators (thus covering a large set of practical cases), and we show that reactive synthesis from LTL EBR specifications can be reduced to solving a safety game over a deterministic symbolic automaton built directly from the specification. We prove the correctness of the proposed approach and we successfully evaluate it on various benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.