Abstract

Sulfhydration by a hydrogen sulfide anion and electrophile thiolation by reactive sulfur species (RSS) such as persulfides/polysulfides (e.g., R-S-SH/R-S-Sn-H(R)) are unique reactions in electrophilic signaling. Using 1,2-dihydroxynaphthalene-4-thioacetate (1,2-NQH2-SAc) as a precursor to 1,2-dihydroxynaphthalene-4-thiol (1,2-NQH2-SH) and a generator of reactive oxygen species (ROS), we demonstrate that protein thiols can be modified by a reactive sulfenic acid to form disulfide adducts that undergo rapid cleavage in the presence of glutathione (GSH). As expected, 1,2-NQH2-SAc is rapidly hydrolyzed and partially oxidized to yield 1,2-NQ-SH, resulting in a redox cycling reaction that produces ROS through a chemical disproportionation reaction. The sulfenic acid forms of 1,2-NQ-SH and 1,2-NQH2-SH were detected by derivatization experiments with dimedone. 1,2-NQH2-SOH modified Keap1 at Cys171 to produce a Keap1-S-S-1,2-NQH2 adduct. Subsequent exposure of A431 cells to 1,2-NQ or 1,2-NQH2-SAc caused an extensive chemical modification of cellular proteins in both cases. Protein adduction by 1,2-NQ through a thio ether (C-S-C) bond slowly declined through a GSH-dependent S-transarylation reaction, whereas that originating from 1,2-NQH2-SAc through a disulfide (C-S-S-C) bond was rapidly restored to the free protein thiol in the cells. Under these conditions, 1,2-NQH2-SAc activated Nrf2 and upregulated its target genes, which were enhanced by pretreatment with buthionine sulfoximine (BSO), to deplete cellular GSH. Pretreatment of catalase conjugated with poly(ethylene glycol) suppressed Nrf2 activation by 1,2-NQH2-SAc. These results suggest that RSS-mediated reversible electrophilic signaling takes place through sulfenic acids formation under oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.