Abstract

Ca2+-Transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum contains several SH groups which are reactive with N-ethylmaleimide (MalNEt) at pH 7.0. The location of the one which is most reactive with MalNEt (SHN, Kawakita et al. J. Biochem. 87, 609 (1980)) was identified on the amino acid sequence of the ATPase. SHN was labeled by reacting sarcoplasmic reticulum membranes with [14C] MalNEt to a labeling density of 1 mol/mol ATPase. [14C]MalNEt-labeled membranes were digested with thermolysin and 14C-labeled SHN peptides were fractionated by Sephadex LH-20 chromatography to give two major peaks of radioactivity. [14C]-MalNEt-labeled peptides were further purified to homogeneity by C18-reversed phase HPLC. Two radioactive peptides containing modified cysteine (Cys), Leu-Gly-Cys-Thr-Ser and Val-Cys-Lys-Met, were finally obtained in roughly equal amounts and in reasonable recovery. Both of these sequences were found in the amino acid sequence of Ca2+-transporting ATPase (Brandl et al. Cell 44, 597 (1986)), and Cys344 and Cys364 were identified as the targets of MalNEt-modification. Thus, 0.5 mol/mol ATPase of each Cys residue actually reacted rapidly with MalNEt under the conditions leading to SHN-modification. Modification of either one with MalNEt may negatively affect the reactivity of the other. Both of the highly reactive SH groups are located in the neighborhood of Asp351, the phosphorylation site of ATPase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.