Abstract

Although the d-band correlations within metastable rare-earth ferrites (ReFe2O4) enable charge ordering transition functionalities beyond conventional semiconductors, their material synthesis yet requires a reducing atmosphere that is toxic and explosive. Herein, we demonstrate a reactive spark plasma sintering (RSPS) strategy to effectively synthesize metastable ReFe2O4 (Re = Er, Tm, Yb, Lu) simply in coarse vacuum within a greatly shortened reaction period. High flexibility is gained in adjusting their rare-earth composition and thereby the charge ordering transition temperature within 218-330 K. Assisted by the temperature-dependent near edge X-ray absorption fine structure (NEXAFS) analysis, an elevation in the Fe3+/Fe2+ orbital configuration within ReFe2O4 was observed compared to previous reports, and it is consistent with their higher Mott temperature and activation energy observed in their electrical transportations. This work elucidates stabilization of the metastable phase (e.g., ReFe2O4) via the non-equilibrium processes of RSPS beyond the thermodynamic restrictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call