Abstract
A numerical method of moment is developed for solute flux through a nonstationary, fractured porous medium. Solute flux is described as a space-time process where time refers to the solute flux breakthrough and space refers to the transverse displacement distribution at a control plane. A first-order mass diffusion model is applied to describe interregional mass diffusion between fracture (advection) and matrix (nonadvection) regions. The chemical is under linear equilibrium sorption in both fracture and matrix regions. Hydraulic conductivity in the fracture region is assumed to be a spatial random variable. In this study, the general framework of Zhang et al.(2000) is adopted for solute flux in a nonstationary flow field. A time retention function related to physical and chemical sorption in the dual-porosity medium is developed and coupled with solute advection along random trajectories. The mean and variance of total solute flux are expressed in terms of the probability density function of the parcel travel time and transverse displacement. The influences of various factors on solute transport are investigated. These factors include the interregional mass diffusion rate between fracture and matrix regions, chemical sorption coefficients in both regions, water contents in both regions, and location of the solute source. In comparison with solute transport in a one-region medium, breakthrough curves of the mean and variance of the total solute flux in a two-region medium have lower peaks and longer tails. As compared with the classical stochastic studies on solute transport in fractured media, the numerical method of moment provides an approach for applying the stochastic method to study solute transport in more complicated fractured media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.