Abstract

After a brief review of the hybrid QM/MM molecular dynamics scheme and its coupling to the metadynamics method, I will show how such a combination of computational tools can be used to study chemical reactions of general biological interest. Specifically, by using such a reactive hybrid paradigm, where the QM driver is a Car–Parrinello Lagrangian dynamics, we have inspected the ATP hydrolysis reaction in the anti-freezing protein known as heat shock cognate protein (Hsc70) and the unconventional propagation of protons across peptide groups in the H-path of the bovine cytochrome c oxidase. While the former represents a fundamental reaction operated by all living beings in a wealth of processes and functions, the second one is involved in cell respiration. For both systems accurate X-ray data are available, yet the actual reaction mechanism escapes experimental probes. The simulations presented here provide the complementary information missing in experiments, offer a direct insight into the reaction mechanisms at a molecular level, and allow to understand which pathways nature can follow to realize these processes fundamental to living organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.