Abstract

Many reactions that occur on solid surfaces are mediated by free radicals. A review is presented of both mechanistic and practical investigations in relation to catalysis and environmental applications. The review begins with actual imaging of surface adsorbed reactive radicals using scanning tunnelling microscopy (STM), and then discusses a range of examples, mainly as underpinned by electron spin resonance (ESR) measurements. Included are surface defects and their reactions, studies of the redox behaviour of zeolites, and the use of radicals adsorbed in zeolites as molecular surface probes of diffusion and reactivity within these important materials. Photocatalysis, mainly using TiO2-based materials, is reviewed both from the fundamental perspective and in terms of some practical examples relating to pollution control. Other reactive oxide surfaces are considered, including silica, and the nature of paramagnetic centres that may be induced thereon by a variety of activation procedures. Evidence is presented for the formation of radical species during heterogeneous reactions on metal surfaces. Finally, the role of free radical generation in creating and modifying polymer and nanomolecular systems is discussed, and the health implications of the ability of some solids such as quartz to generate reactive oxygen radicals in contact with biological media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call