Abstract

The outcomes following collisional quenching of electronically excited OH A (2)Σ(+) by O(2) and CO are examined in a combined experimental and theoretical study. The atomic products from reactive quenching are probed using two-photon laser-induced fluorescence to obtain H-atom Doppler profiles, O ((3)P(J)) atom fine structure distributions, and the relative yields of these products with H(2), O(2), and CO collision partners. The corresponding H-atom translational energy distributions are extracted for the H + O(3) and H + CO(2) product channels, in the latter case revealing that most of the available energy is funneled into internal excitation of CO(2). The experimental product branching ratios show that the O-atom producing pathways are the dominant outcomes of quenching: the OH A (2)Σ(+) + O(2) → O + HO(2) channel accounts for 48(3)% of products and the OH A (2)Σ(+) + CO → O + HCO channel yields 76(5)% of products. In addition, quenching of OH A (2)Σ(+) by O(2) generates H + O(3) products [12(3)%] and returns OH to its ground X (2)Π electronic state [40(1)%; L. P. Dempsey, T. D. Sechler, C. Murray, and M. I. Lester, J. Phys. Chem. A 113, 6851 (2009)]. Quenching of OH A (2)Σ(+) by CO also yields H + CO(2) reaction products [26(5)%]; however, OH X (2)Π (v" = 0,1) products from nonreactive quenching are not observed. Theoretical studies characterize the properties of energy minimized conical intersections in four regions of strong nonadiabatic coupling accessible from the OH A (2)Σ(+) + CO asymptote. Three of these regions have the O-side of OH pointing toward CO, which lead to atomic H and vibrationally excited CO(2) products and/or nonreactive quenching. In the fourth region, energy minimized points are located on a seam of conical intersection from the OH A (2)Σ(+) + CO asymptote to an energy minimized crossing with an extended OH bond length and the H-side of OH pointing toward CO in a bent configuration. This region, exoergic with respect to the reaction asymptote, is likely to be the origin of the dominant O + HCO product channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call