Abstract

Dicumyl peroxide induced reactive melt processing of polyethylene (PE) in a shear mix at 170°C in the absence or presence of selected acrylic monomers (acrylic acid, ethyl acrylate, and butyl acrylate) has been studied. The acrylic graft copolymers of PE showed development of higher shear stress compared with the control PE when studied rheologically in a plate and cone viscometer at 160–190°C. All the modified PE products retained the pseudoplastic flow behaviour of PE. Measure of rupture shear parameters and of thixotropic and relaxation behaviour of the different modified PEs and of the control PE were also evaluated and compared. The observed effects and unexpected trends were analysed and interpreted.The comparative effects of sulphur vulcanisation of polyethylene–ethylene/propylene/dicyclopentadiene terpolymer (PE–EPDM) blends by static and dynamic techniques were also studied using both a conventional curative system and a silane curative system. Rheometric studies indicated development of a co-continuous phase morphology for the 30/70 PE–EPDM blend. For a given blend, cured under given conditions, tensile strength and elongation at break at 25°C were higher for vulcanisates obtained statically than for those obtained dynamically, while the corresponding modulus values followed the opposite trend. The conventional curative usually cured at a higher rate. The property differences from static and dynamic vulcanisation are explained in the light of the differences in the developed morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call