Abstract

Optimal reactive power dispatch is an important task to achieve secure and economic operation of power systems. A well-organized allocation of reactive power in an electric network can minimize the system losses. This paper presents a Cultural Algorithm (CA) with a single point crossover to minimize the real power loss subjected to limits on generator real and reactive power outputs. In this hybrid approach, CA is used to give a good direction to the optimal global region, and a domain knowledge is used as a fine tuning to determine the optimal solution at the final for better convergence. The solution can be achieved by varying the bus voltages, the on-load tap changer positions of transformers and by switching of shunt capacitors. The performance of the proposed method is demonstrated on IEEE 14-bus system to find the optimal reactive power control variables subjected to various equality and inequality constraints. It is found that the results obtained by the proposed method are comparable in terms real power losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call