Abstract

Due to relatively low cost and flexible performance, Dynamic Capacitor (D-CAP) is often designed to implement dynamic reactive power compensation, whose output current might distort under the effects of background harmonic voltage from the grid or non-ideal PWM mode caused by non-linear switch characteristics. This paper presents a reactive power compensation control strategy with waveform quality amelioration of output capacitive current for single-phase Buck-type D-CAP. Through establishing basic control equations, reactive power compensation principle and equivalent model of single-phase Buck-type D-CAP are analyzed. In order to suppress output harmonic current, duty ratio of Buck-type D-CAP is generated by means of introducing Even Harmonic Modulation (EHM). Then a selective current control strategy in multiple synchronous reference frames is adopted to track reactive power compensation current reference with nearly zero steady-state error and alleviate output current distortion with demanded harmonic components. Finally, a series of experimental results from single-phase Buck-type D-CAP laboratory prototype are provided to verify the validity of dynamic reactive power compensation and almost sinusoidal output current waveform optimizing method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call