Abstract

The distribution of ultrathin layers of vanadium oxide on Rh(110) (θV ≤ 1 MLE, one monolayer equivalent corresponds to the number of Rh atoms in the topmost Rh(110) surface layer) after exposure to catalytic methanol oxidation in the 10–4 mbar range has been investigated with x-ray photoelectron spectroscopy and spectroscopic low-energy electron microscopy (SPELEEM). The reaction is shown to cause a macroscopic phase separation of the VOx film into VOx-rich and into V-poor phases. For θV = 0.8 MLE compact VOx islands develop whose substructure exhibits several ordered phases. At θV = 0.4 MLE the VOx-rich phase consists of many small VOx islands (0.1–1 μm). Laterally resolved x-ray photoelectron spectroscopy of V 2p3/2 shows an oxidic component at 515.5 eV binding energy (BE) and a component at 513.0 eV BE attributed to metallic or strongly reduced V. On the V-poor phase only the reduced/metallic component is present. The results are compared with the distribution of ultrathin layers of vanadium oxide on R...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.