Abstract

Autonomous path planning of Micro Air Vehicles (MAVs) in an urban environment is a challenging task because urban environments are dynamic and have variety of obstacles, and the locations of these obstacles may not be available a priori. In this paper we develop a reactive guidance strategy for collision avoidance using bearing-only measurements. The guidance strategy can be used to avoid collision from circular obstacles and to follow straight and curved walls at safe distance. The guidance law moves a obstacle in the sensor field-of-view to a desired constant bearing angle, which causes the MAV to maintain a constant distance from the obstacle. We use sliding mode control theory to derive the guidance law, which is fast, computationally inexpensive, and guarantees collision avoidance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call