Abstract

This paper presents a novel and generic approach of path optimization for nonholonomic systems. The approach is applied to the problem of reactive navigation for nonholonomic mobile robots in highly cluttered environments. This is a collision-free initial path being given for a robot, and obstacles detected while following this path can make it in collision. The current path is iteratively deformed in order to get away from obstacles and satisfy the nonholonomic constraints. The core idea of the approach is to perturb the input functions of the system along the current path in order to modify this path, making an optimization criterion decrease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call