Abstract
Reactive oxygen species (ROS)-responsive nanocarriers have aroused widespread interest in recent years. On the one hand, a high ROS level has been detected in many types of tumor cells. On the other hand, ROS generation is also induced during photodynamic, sonodynamic, or chemodynamic therapy. In addition, multiple types of polymers are sensitive to ROS. Therefore, numerous ROS-responsive polymeric nanocarriers with unique ROS-responsive characteristics have been developed. This review discusses ROS-sensitive polymeric nanocarriers to improve drug delivery efficacy. In particular, ROS-responsive nanocarriers for synergistic cancer therapy are highlighted. The development of novel ROS-sensitive nanocarriers holds great potential for combining ROS-mediated therapy, such as photodynamic therapy, and other therapies to achieve synergistic anticancer efficacy. Statement of significanceReactive oxygen species (ROS)-responsive nanocarriers aroused widespread interest in recent years. On the one hand, a high level of ROS has been found in many types of tumor cells. On the other hand, the ROS generation can also be induced during the photodynamic, sonodynamic, or chemodynamic therapy. Besides, multiple types of polymers were sensitive to the ROS. Therefore, numerous ROS-responsive polymeric nanocarriers with unique ROS responsive characteristics have been developed. This review focuses on the ROS-sensitive polymeric nanocarriers to improve drug delivery efficacy for synergistic cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.