Abstract

Recently, kidney fibrosis following transplantation has become recognized as a main contributor of chronic allograft nephropathy. In transplantation, transient ischemia is an inescapable event. Reactive oxygen species (ROS) play a critical role in ischemia and reperfusion (I/R)-induced acute kidney injury, as well as progression of fibrosis in various diseases such as hypertension, diabetes, and ureteral obstruction. However, a role of ROS/oxidative stress in chronic kidney fibrosis following I/R injury remains to be defined. In this study, we investigated the involvement of ROS/oxidative stress in kidney fibrosis following kidney I/R in mice. Mice were subjected to 30 min of bilateral kidney ischemia followed by reperfusion on day 0 and then administered with either manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP, 5 mg/kg body wt ip), a cell permeable superoxide dismutase (SOD) mimetic, or 0.9% saline (vehicle) beginning at 48 h after I/R for 14 days. I/R significantly increased interstitial extension, collagen deposition, apoptosis of tubular epithelial cells, nitrotyrosine expression, hydrogen peroxide production, and lipid peroxidation and decreased copper-zinc SOD, manganese SOD, and glucose 6-phosphate dehydrogenase activities in the kidneys 16 days after the procedure. MnTMPyP administration minimized these postischemic changes. In addition, MnTMPyP administration significantly attenuated the increases of alpha-smooth muscle actin, PCNA, S100A4, CD68, and heat shock protein 47 expression following I/R. We concluded that kidney fibrosis develops chronically following I/R injury, and this process is associated with the increase of ROS/oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call