Abstract

In our previous study, we examined the effect of exogenous hydrogen peroxide, which causes a potent oxidative stress and has been demonstrated to be a potent apoptosis-inducer in many kinds of cells. We found that the addition of 1 or 10 mM hydrogen peroxide induced reactive oxygen species (ROS) formation, oxidative DNA damage, dysfunction of the mitochondrial membrane potential, and early apoptotic changes in the human osteosarcoma cell line HS-Os-1. We therefore concluded that intracellular ROS formation was involved in the hydrogen peroxide-induced apoptosis of HS-Os-1 cells. In contrast to the osteosarcoma cell line HS-Os-1, human peripheral T cells are considered to be easily susceptible to oxidative stress, because these cells lack peroxidase activity. Therefore, in this study, we investigated the site of ROS formation by utilizing MitoCapture, H2DCFDA (succinimidyl ester of dichloro-dihydrofluorescein diacetate), DAPI (4',6-diamidino-2-phenylindole), and LysoSensor. Our results showed that ROS formation was apparently diffusely distributed in T cells oxidatively stressed with 0.1 mM hydrogen peroxide. Moreover, lysosomal swelling and deformity, possibly revealing lysosomal membrane destabilization, were observed in these cells. Based on the above results, there exists an apoptotic cascade involving early lysosomal membrane destabilization in the hydrogen peroxide-induced apoptosis of human peripheral T cells. Therefore, the possible involvement of lysosomal protease leakage caused by hydroxyl radical formation in lysosomes (possibly resulting in mitochondrial membrane dysfunction) is considered to play an important role in hydrogen peroxide-induced T cell apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.