Abstract

N-(4-hydroxyphenyl)retinamide (HPR) is a synthetic retinoid that inhibits growth of many human tumor cells, including those resistant to natural retinoids. HPR is an effective chemopreventive agent for prostate, cervix, breast, bladder, skin and lung cancers, and has shown promise for the treatment of neuroblastomas. We have previously shown that HPR inhibits proliferation and induces apoptosis of human T-cell lymphotropic virus type I (HTLV-I)-associated adult T-cell leukemia (ATL) and HTLV-I-negative malignant T cells, whereas no effect is observed on normal lymphocytes. In this report, we identified HPR-induced reactive oxygen species (ROS) generation as the key mediator of cell cycle arrest and apoptosis of malignant T cells. HPR treatment of HTLV-I-negative malignant T cells was associated with a rapid and progressive ROS accumulation. Pre-treatment with the antioxidants vitamin C and dithiothreitol inhibited ROS generation, prevented HPR-induced ceramide accumulation, cell cycle arrest, cytochrome c release, caspase-activation and apoptosis. Therefore, anti-oxidants protected malignant T cells from HPR-induced growth inhibition. The expression of the HTLV-I oncoprotein Tax abrogated HPR-induced ROS accumulation in HTLV-I-infected cells, which explains their lower sensitivity to HPR. Defining the mechanism of free radical induction by HPR may support a potential therapeutic role for this synthetic retinoid in ATL and HTLV-I-negative T-cell lymphomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call