Abstract

The molecular nature of mutations induced by Cd was investigated in this study to elucidate the role of Cd in the initiation of carcinogenesis. Exposing Chinese hamster ovary (CHO)-K1 cells to cadmium acetate markedly decreased the colony-forming ability of cells and induced mutation frequency in the hypoxanthine (guanine) phosphoribosyltransferase (hprt) gene. The mutation frequency induced by Cd at LD30-LD20 doses was approximately 20 times that of untreated cells. D-Mannitol, a scavenger of reactive oxygen species (ROS), significantly protects cells against Cd cytotoxicity and mutagenicity. Furthermore, non-cytotoxic doses of 3-amino-1,2,4-triazole, a catalase inhibitor, potentiates Cd cytotoxicity and mutagenicity. The cellular Cd uptake ability was not altered by the combined treatment with either D-mannitol or 3-amino-1,2,4-triazole. The GSH level and the activities of GSH peroxidase, GSSG reductase, and catalase in cells treated with Cd (4 microM, 4 h) decreased to 78%, 47%, 40%, and 22% of the untreated cells, respectively. Those enzymatic activities recovered to normal levels 8 h after removing Cd. Polymerase chain reaction and DNA sequencing analysis of 54 independent Cd mutants revealed Cd-induced base substitutions, splice mutations, and large genomic deletions. All six types of base substitutions were observed; however, base transversions (22/27; 81%) occurred more frequently than transitions (5/27; 19%). The frequencies of mutations occurring at T.A or G.C base pairs were roughly equal. Results in this study strongly suggest that Cd mutagenicity in CHO-K1 cells is ROS-dependent. Moreover, the unique mutational spectrum induced by Cd implies that specific DNA adducts generated through the interaction of Cd-DNA and ROS may play a role in the mutational specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.