Abstract

This study aimed to investigate whether genotoxic stress mediates arsenic (As)-induced decline in sperm quality. Mice drank ultrapure water containing NaAsO2 (15 mg/L) for 70 days. The mature seminiferous tubules and epididymal sperm count were reduced in As-exposed mice. Cell proliferation, determined by immunostaining with Ki67, was suppressed in As-exposed seminiferous tubules and GC-1 cells. PCNA, a proliferation marker, was reduced in As-exposed mouse testes. Cell growth index was decreased in As-exposed GC-1 cells. Flow analysis showed that As-exposed GC-1 cells were retarded at G2/M phase. CDK1 and cyclin B1 were reduced in As-exposed GC-1 cells and mouse testes. Additional experiment revealed that p-ATR, a marker of genotoxic stress, was elevated in As-exposed mouse testes and GC-1 cells. Accordingly, p-p53 and p21, two downstream molecules of ATR, were increased in As-exposed GC-1 cells. Excess reactive oxygen species (ROS), measured by immunofluorescence, and DNA-strand break, determined by Comet assay, were observed in As-exposed GC-1 cells. γH2AX, a marker of DNA-strand break, was elevated in As-exposed seminiferous tubules and GC-1 cells. NAC alleviated As-evoked DNA damage, genotoxic stress, cell proliferation inhibition and sperm count reduction. In conclusion, ROS-evoked genotoxic stress mediates As-induced germ cell proliferation inhibition and decline in sperm quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call