Abstract

The involvement of reactive oxygen species (ROS) in an augmented sensitivity to painful stimuli (hyperalgesia) during inflammation has been suggested, yet how and where ROS affect the pain signaling remain unknown. Here we report a novel role for the superoxide-generating NADPH oxidase in the development of hyperalgesia. In mice lacking Nox1 (Nox1(-/Y)), a catalytic subunit of NADPH oxidase, thermal and mechanical hyperalgesia was significantly attenuated, whereas no change in nociceptive responses to heat or mechanical stimuli was observed. In dorsal root ganglia (DRG) neurons of Nox1(+/Y), pretreatment with chemical mediators bradykinin, serotonin, or phorbol 12-myristate 13-acetate (PMA) augmented the capsaicin-induced calcium increase, whereas this increase was significantly attenuated in DRG neurons of Nox1(-/Y). Concomitantly, PMA-induced translocation of PKCepsilon was markedly perturbed in Nox1(-/Y) or Nox1(+/Y) DRG neurons treated with ROS-scavenging agents. In cells transfected with tagged PKCepsilon, hydrogen peroxide induced translocation and a reduction in free sulfhydryls of full-length PKCepsilon but not of the deletion mutant lacking the C1A domain. These findings indicate that NOX1/NADPH oxidase accelerates the translocation of PKCepsilon in DRG neurons, thereby enhancing the TRPV1 activity and the sensitivity to painful stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.