Abstract

Aims: Airway and pulmonary vascular remodeling is an important pathological feature in the pathogenesis of chronic obstructive pulmonary disease (COPD). Tobacco smoke (TS) induces the production of large amounts of reactive oxygen species (ROS) in COPD lungs. We investigated how ROS lead to airway and pulmonary vascular remodeling in COPD. Results: We used in vitro bronchial and pulmonary artery smooth muscle cells (BSMCs and PASMCs), in vivo TS-induced COPD rodent models, and lung tissues of COPD patients. We found that H2O2 and TS extract (TSE) induced calpain activation in BSMCs and PASMCs. Calpain activation was elevated in smooth muscle of bronchi and pulmonary arterioles in COPD patients and TS-induced COPD rodent models. Calpain inhibition attenuated H2O2- and TSE-induced collagen synthesis and proliferation of BSMCs and PASMCs. Exposure to TS causes increases in airway resistance, right ventricular systolic pressure (RVSP), and thickening of bronchi and pulmonary arteries. Calpain inhibition by smooth muscle-specific knockout of calpain and the calpain inhibitor MDL28170 attenuated increases in airway resistance, RVSP, and thickening of bronchi and pulmonary arteries. Moreover, smooth muscle-specific knockout of calpain did not reduce TS-induced emphysema in the mouse model, but MDL28170 did reduce TS-induced emphysema in the rat model. Innovation: This study provides the first evidence that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling in TS-induced COPD. Calpain might be a novel therapeutic target for the treatment of COPD. Conclusion: These results indicate that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling and pulmonary hypertension in COPD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.