Abstract
Neutrophil chemotaxis is a critical component in innate immunity. Recently, using a small-molecule functional screening, we identified NADPH-oxidase-dependent Reactive Oxygen Species (ROS) as key regulators of neutrophil chemotactic migration. Neutrophils depleted of ROS form more frequent multiple pseudopodia and lost their directionality as they migrate up a chemoattractant concentration gradient. Here, we further studied the role of ROS in neutrophil chemotaxis and found that multiple pseudopodia formation induced by NADPH inhibitor diphenyleneiodonium chloride (DPI) was more prominent in relatively shallow chemoattractant gradient. It was reported that, in shallow chemoattractant gradients, new pseudopods are usually generated when existing ones bifurcate. Directional sensing is mediated by maintaining the most accurate existing pseudopod, and destroying pseudopods facing the wrong direction by actin depolymerization. We propose that NADPH-mediated ROS production may be critical for disruption of misoriented pseudopods in chemotaxing neutrophils. Thus, inhibition of ROS production will lead to formation of multiple pseudopodia.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.