Abstract

ABSTRACTPurpose: Our previous studies indicate that phorbol 12-myristate 13-acetate (PMA)-treated U937 cells cultured on collagen I-coated dishes express lowered production of pro-inflammatory mediators in parallel through reduced reactive oxygen species (ROS) levels. By contrast, PMA-treated U937 cells on gelatin, the denatured collagen, show enhanced production of pro-inflammatory mediators, mediated by up-regulating autophagy levels. The present study is aimed to investigate the effect of ROS levels in PMA-treated U937 cells cultured on gelatin-coated surface. Material and methods: MTT assay, flow cytometric analysis of ROS and autophagy, biochemical detection of antioxidant levels, enzyme-linked immunosorbent assay, and western blot were used. Results: Gelatin-coating increased ROS levels in PMA-treated U937 cells. Increased ROS levels are involved in the regulation of cell aggregation and the release of pro-inflammatory mediators in gelatin-coated culture. These results lead to the query about the crosstalk between the two positive regulators, the autophagy and ROS. Autophagy induction is attenuated by N-acetyl-L-cysteine treatment, but the treatment with autophagy inhibitor, 3-methyladenine, does not affect ROS levels, suggesting ROS are upstream of autophagy in the regulation axis of differentiated U937 cells on gelatin-coated surface. Further study confirmed that upregulation of autophagy was responsible for ROS-induced cell aggregation and production of pro-inflammatory mediators. Conclusion: The results suggest that gelatin-coating promotes the aggregation of PMA-treated U937 cells and the production of pro-inflammatory mediators by ROS-autophagy signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call